Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.4 Separable Differential Equations - Problems - Page 45: 34

Answer

See below

Work Step by Step

a) Chemicals A and B combine in the ratio a:b in producing the chemical C. Initial amount of A: $A_0$ Initial amount of B: $B_0$ For chemical A: $\frac{a}{a+b}C$ or $(A_0-\frac{a}{a+b}C)$ For chemical B: $\frac{b}{a+b}C$ or $(B_0-\frac{b}{a+b}C)$ Set up the mass action: $\frac{dC}{dt}=k(A_0-\frac{a}{a+b}C)(B_0-\frac{b}{a+b}C)$ b) Obtain: $\frac{dC}{dt}=k\frac{a}{a+b}\frac{b}{a+b}(A_0\frac{a+b}{a}-C)(B_0\frac{a+b}{b}-C)\\ \frac{dC}{dt}=k\frac{(a+b)^2}{ab}(A_0\frac{a+b}{a}-C)(B_0\frac{a+b}{b}-C)$ Hence, $\rightarrow r=\frac{(a+b)^2}{ab}k\\ \alpha=\frac{a+b}{a}A_0\\\beta=\frac{a+b}{b}B_0$ Substitute: $\frac{dC}{dt}=r(\alpha-C)(\beta-C)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.