Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.5 Some Simple Population Models - Problems - Page 52: 13

Answer

$P=\frac{C}{e^{c_1}e^{-rt}}$ $\underset{t \rightarrow \infty}{\lim} P(t)=C$

Work Step by Step

Follow the Gumpertz Population Model: $$\frac{dP}{dt}=rP(\ln C-\ln P)$$ $$r=\frac{dP}{dt}\frac{1}{P(\ln C-\ln P)}$$ $$$rdt=dP\frac{1}{P(\ln C-\ln P)}$$ Intergrate: $$\int rdt=\int \frac{1}{P(\ln C-\ln P)}dP$$ $$-\ln(\ln C- \ln P)=rt+c_1$$ Solve for P: $$\ln(\ln C- \ln P)=-rt-c_1$$ $$\ln C- \ln P=c_1e^{rt}$$ $$\ln (\frac{C}{P})=c_1e^{rt}$$ $$\frac{C}{P}=e^{c_1}e^{rt}$$ $$P=\frac{C}{e^{c_1}e^{-rt}}$$ Find the limit: $$\underset{t \rightarrow \infty}{\lim} e^{-rt}=0$$ and $$\underset{t \rightarrow \infty}{\lim} e^{c_1(0)}=1$$ Hence, $\underset{t \rightarrow \infty}{\lim} P(t)=C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.