Differential Equations and Linear Algebra (4th Edition)

Published by Pearson
ISBN 10: 0-32196-467-5
ISBN 13: 978-0-32196-467-0

Chapter 1 - First-Order Differential Equations - 1.8 Change of Variables - Problems - Page 82: 67

Answer

$y(x)=tan^{-1}(1+Ce^{-\sqrt 1+ x})$

Work Step by Step

We are given: $$\sec^2y\frac{dy}{dx}+\frac{1}{2\sqrt 1+x}\tan y=\frac{1}{2\sqrt 1+x}$$ with $p(x)=\frac{1}{2\sqrt 1+x}$ $q(x)=\frac{1}{2\sqrt 1+x}$ $\tan y= f( y) \rightarrow \sec^2y=f'(y)$ Let $t=\tan y \rightarrow t'=sec^2yy'$ Substituting: $$\frac{du}{dx}+\frac{1}{2\sqrt 1+x}t=\frac{1}{2\sqrt 1+x}$$ The integrating factor is: $$I(x)=e^{\frac{1}{2}\int \frac{1}{\sqrt 1+x}dx}=e^{\sqrt 1+x}$$ Hence, $$\frac{d}{dx}(e^{\sqrt 1+x}t)=\frac{e^{\sqrt 1+x}}{2\sqrt 1+x}$$ Integrating both sides: $$e^{\sqrt 1+x}t=e^{\sqrt 1+x}+C$$ $C$ is a constant of integration. $$t=1+\frac{C}{e^{\sqrt 1+x}}$$ Since $t= \tan y \rightarrow y=\tan^{-1} y$ and $\tan x$ is an invertible function The solution is: $$y(x)=tan^{-1}(1+Ce^{-\sqrt 1+ x})$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.