Answer
$$x=-\frac{3}{4}, \quad y=0 , \quad z=-\frac{5}{4}.$$
Work Step by Step
The augmented matrix is given by
$$
\left[ \begin {array}{cccc} 2&0&6&-9\\ 3&-2&11&-16
\\ 3&-1&7&-11\end {array} \right]
.
$$
Using Gauss-Jordan elimination, we get the row-reduced echelon form as follows
$$\left[ \begin {array}{cccc} 1&0&0&-\frac{3}{4}\\ 0&1&0&0
\\ 0&0&1&-\frac{5}{4}\end {array} \right]
.$$
From which the solution is
$$x=-\frac{3}{4}, \quad y=0 , \quad z=-\frac{5}{4}.$$