Answer
$|-6|-|-8|\quad \lt \quad |-6-(-8)|\quad \lt|-6+(-8)|$
( $|x|-|y|\quad \lt \quad |x-y|\quad \lt|x+y| $ )
Work Step by Step
$|-6-(-8)|=|-6+8|\qquad $subtracting = adding the opposite
$=|2|$
$=2$
$|-6|-|-8|=6-8$
$=6+(-8)$
$=-2\qquad$ the negative number has greater absolute value.
$|x+y|=|-6+(-8)|=|-14|=14$
$|-6|-|-8|\quad \lt \quad |-6-(-8)|\quad \lt|-6+(-8)|$
( $|x|-|y|\quad \lt \quad |x-y|\quad \lt|x+y| $ )