Answer
See solution below.
The non pivot columns of A are a linear combination of all the pivot columns of A.
Work Step by Step
Matrix B has all columns of matrix A except columns 3 and 5. Therefore, let us solve the two equations below:
$\begin{bmatrix}
12 & 10 & -3 & 10\\
-7 & -6 & 7 & 5\\
9 & 9 & -5 & -1\\
-4 & -3 & 6 & 9\\
8 & 7 & -9 & -8\\
\end{bmatrix}\begin{bmatrix}
x_1\\
x_2\\
x_3\\
x_4\\
\end{bmatrix}=\begin{bmatrix}
-6\\
4\\
-9\\
1\\
-5\\
\end{bmatrix}$
By finding the rref of the augmented matrix, we find
$x=\begin{bmatrix}
2\\
-3\\
0\\
0\\
\end{bmatrix}$
$\begin{bmatrix}
12 & 10 & -3 & 10\\
-7 & -6 & 7 & 5\\
9 & 9 & -5 & -1\\
-4 & -3 & 6 & 9\\
8 & 7 & -9 & -8\\
\end{bmatrix}\begin{bmatrix}
x_1\\
x_2\\
x_3\\
x_4\\
\end{bmatrix}=\begin{bmatrix}
7\\
-9\\
5\\
-8\\
11\\
\end{bmatrix}$
By finding the rref of the augmented matrix, we find
$x=\begin{bmatrix}
2\\
-2\\
-1\\
0\\
\end{bmatrix}$
Therefore, the columns 3 and 5, not included in Matrix B span the columns of B. This shows that the non pivot columns of A are a linear combination of all the pivot columns of A.