Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.7 Exercises - Page 63: 44

Answer

See solution below. The non pivot columns of A are a linear combination of all the pivot columns of A.

Work Step by Step

Matrix B has all columns of matrix A except columns 3 and 5. Therefore, let us solve the two equations below: $\begin{bmatrix} 12 & 10 & -3 & 10\\ -7 & -6 & 7 & 5\\ 9 & 9 & -5 & -1\\ -4 & -3 & 6 & 9\\ 8 & 7 & -9 & -8\\ \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ \end{bmatrix}=\begin{bmatrix} -6\\ 4\\ -9\\ 1\\ -5\\ \end{bmatrix}$ By finding the rref of the augmented matrix, we find $x=\begin{bmatrix} 2\\ -3\\ 0\\ 0\\ \end{bmatrix}$ $\begin{bmatrix} 12 & 10 & -3 & 10\\ -7 & -6 & 7 & 5\\ 9 & 9 & -5 & -1\\ -4 & -3 & 6 & 9\\ 8 & 7 & -9 & -8\\ \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ \end{bmatrix}=\begin{bmatrix} 7\\ -9\\ 5\\ -8\\ 11\\ \end{bmatrix}$ By finding the rref of the augmented matrix, we find $x=\begin{bmatrix} 2\\ -2\\ -1\\ 0\\ \end{bmatrix}$ Therefore, the columns 3 and 5, not included in Matrix B span the columns of B. This shows that the non pivot columns of A are a linear combination of all the pivot columns of A.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.