Linear Algebra and Its Applications (5th Edition)

Published by Pearson
ISBN 10: 032198238X
ISBN 13: 978-0-32198-238-4

Chapter 1 - Linear Equations in Linear Algebra - 1.9 Exercises - Page 80: 37

Answer

See the answers

Work Step by Step

\[ \left[\begin{array}{cccc} -5 & 10 & -5 & 4 \\ 8 & 3 & -4 & 7 \\ 4 & -9 & 5 & -3 \\ -3 & -2 & 5 & 4 \end{array}\right] \] Given matrix \[ \left.\begin{array}{cccc} -5 & 10 & -5 & 4 \\ 0 & 19 & -12 & 67 / 5 \\ 0 & -1 & 1 & 1 / 5 \\ 0 & -8 & 8 & 8 / 5 \end{array}\right] \] $R_{3}=R_{3}+\frac{4}{5} R_{1}$ $R_{4}=R_{4}-\frac{3}{5} R_{1}$ \[ \left[\begin{array}{cccc} -5 & 10 & -5 & 4 \\ 0 & 19 & -12 & 67 / 5 \\ 0 & 0 & 7 / 19 & 86 / 95 \\ 0 & 0 & 56 / 19 & 688 / 95 \end{array}\right] \] $R_{3}=R_{3}+\frac{1}{19} R_{2}$ $R_{4}=R_{4}+\frac{8}{19} R_{2}$ \begin{aligned} &\left[\begin{array}{cccc} -5 & 10 & -5 & 4 \\ 0 & 19 & -12 & 67 / 5 \\ 0 & 0 & 7 / 19 & 86 / 95 \\ 0 & 0 & 0 & 0 \end{array}\right]\\ &R_{4}=R_{4}-8 R_{3}\\ &\left[\begin{array}{cccc} -5 & 10 & 0 & 114 / 7 \\ 0 & 19 & 0 & 1501 / 35 \\ 0 & 0 & 7 / 19 & 86 / 95 \\ 0 & 0 & 0 & 0 \end{array}\right]\\ &R_{1}=R_{1}+\frac{228}{7} R_{3}\\ &R_{2}=R_{2}+\frac{95}{7} R_{3}\\ &\left[\begin{array}{cccc} -5 & 0 & 0 & -44 / 7 \\ 0 & 19 & 0 & 1501 / 35 \\ 0 & 0 & 7 / 19 & 86 / 95 \\ 0 & 0 & 0 & 0 \end{array}\right]\\ &R_{1}=R_{1}-\frac{10}{19} R_{3}\\ &\left[\begin{array}{cccc} 1 & 0 & 0 & 44 / 35 \\ 0 & 1 & 0 & 79 / 35 \\ 0 & 0 & 1 & 86 / 35 \\ 0 & 0 & 0 & 0 \end{array}\right] \end{aligned} Simplifying Matrix by taking common out \[ \left[\begin{array}{cccc} 1 & 0 & 0 & 1.2571 \\ 0 & 1 & 0 & 2.2571 \\ 0 & 0 & 1 & 2.4571 \\ 0 & 0 & 0 & 0 \end{array}\right] \] There is no pivot in the fourth column of the standard matrix A, so the equation $A x=0$ has a nontrivial solution. By Theorem $11,$ the transformation $\mathrm{T}$ is not one-to-one.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.