Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 1 - Limits and Continuity - 1.1 Limits (An Intuitive Approach) - Exercises Set 1.1 - Page 61: 27

Answer

$y-1=-2(x+1)$ or $y=-2x-1$

Work Step by Step

Let the given point be $P(−1, 1)$. Let the slope of the secant line from $P$ to a distinct point $Q(x,x^2)$ be $m$. $\implies m=\dfrac{x^2-1}{x+1}$ Now simplify $ m=\dfrac{x^2-1}{x+1}$. We get, $m=\dfrac{(x-1)(x+1)}{x+1}=x-1$ if point $Q$ moves toward the point $P$ on the curve. Then, $x$ approaches $-1$. That gives $m=-2$ We know that if $Q$ gets closer to $P$, then the slope of secant gets closer to the slope of the tangent at $P$. Hence, the slope of the tangent at $P$ is $-2$. Thus, the equation of the tangent line at $P$ can be written using point-slope form of a line as follows: $y-1=-2(x+1)$ or $y=-2x-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.