Answer
$f(x)=3+[[x]]$ and $g(x)=3-[[-x]]$ differ when $x\in\mathbb{R}$ is not an integer. For two consecutive integers $j, j+1$, if $j
Work Step by Step
Recall that $[[x]]$ is the greatest integer $n$ where $n\leq x$.
For $x\in \mathbb{R}$, $[[x]]=j$ where $j-x>-j-1$, $[[-x]]=-j-1$ . Thus, if $x\in \mathbb{R}$ and $j