Answer
$\lim\limits_{x\to\frac{1}{2}^+}(x^2\tan{(\pi x)})=-\infty.$
Work Step by Step
$\lim\limits_{x\to\frac{1}{2}^+}(x^2\tan{(\pi x)})\to$
$\lim\limits_{x\to\frac{1}{2}^+}x^2=(\frac{1}{2}^+)^2=\dfrac{1}{4}.$
$\lim\limits_{x\to\frac{1}{2}^+}\tan{(\pi x)}=\tan{(\pi(\frac{1}{2}^+))}=-\infty.$
By Theorem $1.15:$
$\lim\limits_{x\to\frac{1}{2}^+}(x^2\tan{(\pi x)})=-\infty.$