Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 1 - Limits and Their Properties - 1.5 Exercises - Page 90: 70

Answer

1. $\lim\limits_{x \to c} [f(x) ±g(x)] = ∞$ 2. $\lim\limits_{x \to c} [f(x)\times g(x)] = ∞, L>0$ or $\lim\limits_{x \to c} [f(x)\times g(x)] =-∞, L<0$ 3. $\lim\limits_{x \to c} \frac{g(x)}{f(x)} =0$

Work Step by Step

1. $\lim\limits_{x \to c} [f(x) ±g(x)]$: Sum difference and property of limits $\lim\limits_{x \to c} f(x)± \lim\limits_{x \to c} g(x)$ $\lim\limits_{x \to c} f(x)$ = ∞ | $\lim\limits_{x \to c} g(x) =L$ Therefore: $∞±L =∞ $ 2. $\lim\limits_{x \to c} [f(x)\times g(x)]$: Product property of limits $\lim\limits_{x \to c} f(x)\times \lim\limits_{x \to c} g(x)$ $\lim\limits_{x \to c} f(x)$ = ∞ | $\lim\limits_{x \to c} g(x) =L$ Therefore: $∞\times L =∞ $ if $L>0$ and $∞\times L =-∞ $ if $L<0$ 3. $\lim\limits_{x \to c} \frac{g(x)}{f(x)} =0$: Quotient property of limits $\frac{\lim\limits_{x \to c} g(x)}{\lim\limits_{x \to c} f(x)}$ $\lim\limits_{x \to c} f(x)$ = ∞ | $\lim\limits_{x \to c} g(x) =L$ Therefore: $\frac{L}{∞}$ = $0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.