Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 1 - Precalculus Review - 1.1 Real Numbers, Functions, and Graphs - Exercises - Page 12: 84

Answer

To prove: $\dfrac{p}{10^{s}-1}=0.\overline{p_{1}\dots p_{s}}$, where $p=p_{1}\dots p_{s}$ and $p_{1}, \dots ,p_{s}$ are digits for number $p$. Proof: Right hand side $=0.\overline{p_{1}\dots p_{s}}$ $=0.p_{1}\dots p_{s} +0.\underbrace{0\dots 0}_\text{s zeroes}p_{1}\dots p_{s}+0.\underbrace{0\dots 0}_\text{s zeroes}\underbrace{0\dots 0}_\text{s zeroes}p_{1}\dots p_{s}+\cdots$ $=\dfrac{p_{1}\dots p_{s}}{10^{s}}+\dfrac{p_{1}\dots p_{s}}{10^{2s}}+\dfrac{p_{1}\dots p_{s}}{10^{3s}}+\cdots$ $=\dfrac{p}{10^{s}}+\dfrac{p}{10^{2s}}+\dfrac{p}{10^{3s}}+\cdots$ $=p\left(\dfrac{1}{10^{s}}+\dfrac{1}{10^{2s}}+\dfrac{1}{10^{3s}}+\cdots \right)$ $=p\cdot \dfrac{\frac{1}{10^{s}}}{1-\frac{1}{10^{s}}}$ [using the sum of infinite geometric series] $=p\cdot \dfrac{1}{10^{s}-1}$ $=\dfrac{p}{10^{s}-1}$ $=$ Left hand side Hence, proved. Now, $r=\dfrac{2}{11}=\dfrac{18}{10^{2}-1}=0.\overline{18}=0.181818\dots .$

Work Step by Step

The results used are as follows: (i) If a finite decimal expansion is $0.p_{1}\dots p_{s}$, then, $0.p_{1}\dots p_{s}=\dfrac{p_{1}\dots p_{s}}{10^{s}}$. (ii) If we have $a +a\cdot r +a\cdot r^{2}+\cdots$ to be an infinite geometric series with common ratio, $r$ such that $-1
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.