Answer
(a) $ \dfrac{180}{\pi} \approx 57.3^{\circ}$
(b)$\, 60^{\circ}$
(c) $\dfrac{75}{\pi} \approx23.87^{\circ}$
(d) $225^{\circ}$
Work Step by Step
Recall:
$$\text{Angle in degree } = \text{Angle in radian } \times \dfrac{180}{\pi}$$
(a)
$$\theta= 1 \times \dfrac{180}{\pi} = \dfrac{180}{\pi} \approx 57.3^{\circ}$$
(b)
$$\theta= \dfrac{\pi}{3} \times \dfrac{180}{\pi} = 60^{\circ}$$
(c)
$$\theta=\dfrac{5}{12}\times \dfrac{180}{\pi}=\dfrac{75}{\pi} \approx23.87^{\circ}$$
(d)
$$\theta = \dfrac{-3\pi}{4} \times \dfrac{180}{\pi} = -135^{\circ}$$
$\because \theta \text{ is equivalent to } \theta+360^{\circ}$
$$-135 = -135+360 =225^{\circ}$$