Answer
$\sin\theta=\frac{1}{17}$, $\cos \theta=\frac{4}{\sqrt {17}}$ and $\sec\theta=\frac{\sqrt {17}}{4}$
Work Step by Step
$\tan\theta=\frac{1}{\cot\theta}=\frac{1}{4}$
$\sec^{2}\theta =1+\tan^{2}\theta=1+\frac{1}{16}=\frac{17}{16}$
$\implies\,\sec\theta=\frac{\sqrt {17}}{4}$ ($\sec \theta$ is positive as $0\leq\theta\lt\frac{\pi}{2}$)
$\cos \theta=\frac{1}{\sec \theta}=\frac{4}{\sqrt {17}}$
$\sin\theta= 1-\cos^{2}\theta=1-\frac{16}{17}=\frac{1}{17}$