Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 1 - Precalculus Review - 1.5 Technology: Calculators and Computers - Exercises - Page 36: 23

Answer

$f_n(x)\rightarrow \sqrt x$

Work Step by Step

Consider the functions: $f_{n+1}(x)=\dfrac{1}{2}\left(f_n(x)+\dfrac{x}{f_n(x)}\right)$ Compute $f_n(x)$ for $n=3,4,5$: $f_3(x)=\dfrac{1}{2}\left(\dfrac{1}{2}(x+1)+\dfrac{x}{\dfrac{1}{2}(x+1)}\right)=\dfrac{x^2+6x+1}{4(x+1)}$ $f_4(x)=\dfrac{1}{2}\left(\dfrac{x^2+6x+1}{4(x+1)}+\dfrac{x}{\dfrac{x^2+6x+1}{4(x+1)}}\right)=\dfrac{x^4+28x^3+70x^2+28x+1}{8(x+1)(x^2+6x+1)}$ $f_5(x)=\dfrac{1}{2}\left(\dfrac{x^4+28x^3+70x^2+28x+1}{8(x+1)(x^2+6x+1)}+\dfrac{x}{\dfrac{x^4+28x^3+70x^2+28x+1}{8(x+1)(x^2+6x+1)}}\right)$ $=\dfrac{x^8+120x^7+1820x^6+8008x^5+12,870x^4+8008x^3+1820x^2+120x+1}{16(x+1)(x^2+6x+1)(x^4+28x^3+70x^2+28x+1)}$ Graph $f_1(x),f_2(x),f_3(x),f_4(x),f_5(x)$ and $\sqrt x$. Notice that as $n$ grows, $f_n$ gets closer and closer to $\sqrt x$, therefore $f_n(x)$ is asymptotic to $\sqrt x$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.