Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.2 Limits: A Numerical and Graphical Approach - Exercises - Page 56: 68

Answer

$\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^1}=0$ $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^2}=1$ $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^{2n+1}}$ does not exist $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^{2n}}=\infty$

Work Step by Step

We have to determine: $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^k}$ Compute the limit for $k=1$: $\dfrac{\sin (\sin^2 (-0.01))}{(-0.01)^1}\approx -0.0099996667$ $\dfrac{\sin (\sin^2 (-0.001))}{(-0.001)^1}\approx -0.0009999997$ $\dfrac{\sin (\sin^2 (-0.0001))}{(-0.0001)^1}\approx -0.0001$ $\dfrac{\sin (\sin^2 (-0.00001))}{(-0.00001)^1}\approx -0.00001$ $\dfrac{\sin (\sin^2 0.00001)}{0.00001^1}\approx 0.00001$ $\dfrac{\sin (\sin^2 0.0001)}{0.0001^1}\approx 0.0001$ $\dfrac{\sin (\sin^2 0.001)}{0.001^1}\approx 0.0009999997$ $\dfrac{\sin (\sin^2 0.1)}{0.1^1}\approx 0.0099996667$ Therefore we got: $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^1}=0$ Compute the limit for $k=2$: $\dfrac{\sin (\sin^2 (-0.01))}{(-0.01)^2}\approx 0.99996667$ $\dfrac{\sin (\sin^2 (-0.001))}{(-0.001)^2}\approx 0.99999967$ $\dfrac{\sin (\sin^2 (-0.0001))}{(-0.0001)^2}\approx 1$ $\dfrac{\sin (\sin^2 (-0.00001))}{(-0.00001)^2}\approx 1$ $\dfrac{\sin (\sin^2 0.00001)}{0.00001^2}\approx 1$ $\dfrac{\sin (\sin^2 0.0001)}{0.0001^2}\approx 1$ $\dfrac{\sin (\sin^2 0.001)}{0.001^2}\approx 0.99999967$ $\dfrac{\sin (\sin^2 0.1)}{0.1^2}\approx 0.99996667$ Therefore we got: $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^2}=1$ Compute the limit for $k=3$: $\dfrac{\sin (\sin^2 (-0.01))}{(-0.01)^3}\approx -99.996667$ $\dfrac{\sin (\sin^2 (-0.001))}{(-0.001)^3}\approx -999.99967$ $\dfrac{\sin (\sin^2 (-0.0001))}{(-0.0001)^3}\approx -10,000$ $\dfrac{\sin (\sin^2 (-0.00001))}{(-0.00001)^3}\approx -100,000$ $\dfrac{\sin (\sin^2 0.00001)}{0.00001^3}\approx 100,000$ $\dfrac{\sin (\sin^2 0.0001)}{0.0001^3}\approx 10,000$ $\dfrac{\sin (\sin^2 0.001)}{0.001^3}\approx 999.99967$ $\dfrac{\sin (\sin^2 0.1)}{0.1^3}\approx 99.996667$ Therefore we got: $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^3}$ does not exist Compute the limit for $k=4$: $\dfrac{\sin (\sin^2 (-0.01))}{(-0.01)^4}\approx 9999.6667$ $\dfrac{\sin (\sin^2 (-0.001))}{(-0.001)^4}\approx 999,999.67$ $\dfrac{\sin (\sin^2 (-0.0001))}{(-0.0001)^4}\approx 10^8$ $\dfrac{\sin (\sin^2 (-0.00001))}{(-0.00001)^4}\approx 10^{10}$ $\dfrac{\sin (\sin^2 0.00001)}{0.00001^4}\approx 10^{10}$ $\dfrac{\sin (\sin^2 0.0001)}{0.0001^4}\approx 10^8$ $\dfrac{\sin (\sin^2 0.001)}{0.001^4}\approx 999,999.67$ $\dfrac{\sin (\sin^2 0.1)}{0.1^4}\approx 9999.6667$ Therefore we got: $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^4}=\infty$ Therefore we got: $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^1}=0$ $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^2}=1$ $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^{2n+1}}$ does not exist $\displaystyle\lim_{x\rightarrow 0} \dfrac{\sin (\sin^2 x)}{x^{2n}}=\infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.