Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - Chapter Review Exercises - Page 95: 58

Answer

$y=9/2$

Work Step by Step

Since \begin{align*} \lim _{x \rightarrow \infty} \frac{9 x^{2}-4}{2 x^{2}-x}&=\lim _{x \rightarrow \infty} \frac{\frac{9 x^{2}}{x^{2}}-\frac{4}{x^{2}}}{\frac{2 x^{2}}{x^{2}}-\frac{x}{x^{2}}}\\ &=\lim _{x \rightarrow \infty} \frac{9-\frac{4}{x^{2}}}{2-\frac{1}{x}}\\ &=\frac{9-\frac{4}{\infty}}{2-\frac{1}{\infty}}\\ &=\frac{9}{2} \end{align*} and \begin{align*} \lim _{x \rightarrow- \infty} \frac{9 x^{2}-4}{2 x^{2}-x}&=\lim _{x \rightarrow -\infty} \frac{\frac{9 x^{2}}{x^{2}}-\frac{4}{x^{2}}}{\frac{2 x^{2}}{x^{2}}-\frac{x}{x^{2}}}\\ &=\lim _{x \rightarrow- \infty} \frac{9-\frac{4}{x^{2}}}{2-\frac{1}{x}}\\ &=\frac{9-\frac{4}{-\infty}}{2-\frac{1}{-\infty}}\\ &=\frac{9}{2} \end{align*} Then, the horizontal asymptote is $y=9/2$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.