Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.1 Definition of the Derivative - Preliminary Questions - Page 102: 5

Answer

Result: f'(-1)= -2

Work Step by Step

Step-1: The derivative f'(a) is defined by the following equivalent limits. $ f'(a) = \lim\limits_{h \to 0} f(a+h) - f(a)\div h $ ......(1) And $ f'(a)= \lim\limits_{x \to a} f(x)-f(a)\div x-a $ ....(2) Step-2: Let f(x) = 3x^{2} +4x +2 , a= -1 Using (1) we have, f'(-1) = \lim\limits_{h \to 0} f(-1+h) -f(-1)\div h = \lim\limits_{h \to 0} (-1+h)^{2} +(-1+h) +2-[3(-1)^{2} +4(-1) +2 \div h = \lim\limits_{h \to 0} 3-6h +3h^{2} -4+4h+1\div h =\lim\limits_{h \to 0} 3h^{2} -2h\div h \lim\limits_{h \to 0} 3h-2=-2 Now, using (2) we have, f'(-1)=\lim\limits_{x \to -1} f(x)-f(-1)\div x-(-1) = \lim\limits_{x \to -1} 3x^{2} +4x+2-1\div x+1 = \lim\limits_{x \to -1} 3x^{2} +4x+1\div x+1 = \lim\limits_{x \to -1} (3x+1)(x+1)\div(x+1) = \lim\limits_{x\to -1} (3x+1)= -2
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.