Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.2 The Derivative as a Function - Exercises - Page 115: 60

Answer

$$0.74$$

Work Step by Step

We are given: $$v_{\mathrm{avg}}=\sqrt{\frac{8 R T}{\pi M}}$$ Since $$ R= 8.31,\ \ \ \ M= 0.032 $$ Then $$ v_{\mathrm{avg}}=\sqrt{\frac{8 R T}{\pi M}}= v_{\mathrm{avg}}=\sqrt{\frac{8 (8.31)T}{\pi (0.032)}} = \sqrt{\frac{2077.5}{\pi}}T^{1/2}$$ Hence \begin{align*} \frac{dv_{\mathrm{avg}}}{dT}&=\frac{1}{2} \sqrt{\frac{2077.5}{\pi}}T^{-1/2}\\ \frac{dv_{\mathrm{avg}}}{dT}\bigg|_{T=300}&=\frac{1}{2} \sqrt{\frac{2077.5}{\pi}}(300)^{-1/2}\\ &\approx 0.74 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.