Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.6 Calculating Limits Using the Limit Laws - 1.6 Exercises - Page 70: 34

Answer

(a) Use a graph of: $$f(x) = \frac{\sqrt{3+x}-\sqrt 3}{x}$$ to estimate the value of $\lim\limits_{x \to 0}f(x)$ (b) Use a table of values of $f(x)$ to estimate the limit (c) Use the limits laws to find the exact value of the limit

Work Step by Step

$$\lim\limits_{x \to 0}\frac{\sqrt {3+x}-\sqrt 3}{x}= \lim\limits_{x \to 0}\frac{\sqrt {3+x}-\sqrt 3}{x}*\frac{\sqrt {3+x}+\sqrt 3}{\sqrt {3+x}+\sqrt 3} = \lim\limits_{x \to 0}\frac{{3+x-3}}{x(\sqrt {3+x}+\sqrt 3)}= \lim\limits_{x \to 0}\frac{{x}}{x(\sqrt {3+x}+\sqrt 3)} = \lim\limits_{x \to 0}\frac{{1}}{(\sqrt {3+x}+\sqrt 3)} = \frac{{1}}{(\sqrt {3+0}+\sqrt 3)} = \frac{\sqrt 3}{6} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.