Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.6 Calculating Limits Using the Limit Laws - 1.6 Exercises - Page 72: 64

Answer

$$ \lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}=\frac{1}{2} $$

Work Step by Step

$$ \begin{aligned} \lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} &=\lim _{x \rightarrow 2}\left(\frac{\sqrt{6-x}-2}{\sqrt{3-x}-1} \cdot \frac{\sqrt{6-x}+2}{\sqrt{6-x}+2} \cdot \frac{\sqrt{3-x}+1}{\sqrt{3-x}+1}\right)\\ &=\lim _{x \rightarrow 2}\left[\frac{(\sqrt{6-x})^{2}-2^{2}}{(\sqrt{3-x})^{2}-1^{2}} \cdot \frac{\sqrt{3-x}+1}{\sqrt{6-x}+2}\right]\\ &=\lim _{x \rightarrow 2}\left(\frac{6-x-4}{3-x-1} \cdot \frac{\sqrt{3-x}+1}{\sqrt{6-x}+2}\right)\\ &=\lim _{x \rightarrow 2} \frac{(2-x)(\sqrt{3-x}+1)}{(2-x)(\sqrt{6-x}+2)}\\ &=\lim _{x \rightarrow 2} \frac{\sqrt{3-x}+1}{\sqrt{6-x}+2}\\ &=\frac{1}{2} \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.