Answer
$\lim\limits_{x \to \infty}(1+\frac{1}{x})^{x}\approx2.718$
Work Step by Step
Numerical Estimation:
For $x=1000$ ; $(1+\frac{1}{1000})^{1000}\approx2.71692$
For $x=10000$ ; $(1+\frac{1}{10000})^{10000}\approx2.71815$
For $x=100000$ ; $(1+\frac{1}{100000})^{100000}\approx2.71827$
For $x=1000000$ ; $(1+\frac{1}{1000000})^{1000000}\approx2.71828$
For $x=10000000$ ; $(1+\frac{1}{10000000})^{10000000}\approx2.71828$