Calculus Concepts: An Informal Approach to the Mathematics of Change 5th Edition

Published by Brooks Cole
ISBN 10: 1-43904-957-2
ISBN 13: 978-1-43904-957-0

Chapter 1 - Ingredients of Change: Functions and Limits - 1.3 Activities - Page 30: 3

Answer

(a) $ 1.5$ (b) $ 1.5$ (c) $ 1.5$ (d) $ 2$ (e) No

Work Step by Step

From the given figure, we get (a) $\lim _{t \rightarrow 1^{-}} m(t)=1.5$ (b) $\lim _{t \rightarrow 1^{+}} m(t)=1.5$ (c) $\lim _{t \rightarrow 1 } m(t)=1.5$ (d)$ m(1)= 2$ (e) $m(t) $ is not continuous at $t=1$ , because $$\lim _{t \rightarrow 1^{-}} m ( t )=\lim _{t \rightarrow 1^{+}} m ( t )=\lim _{t \rightarrow 1 } m ( t ) \neq m(1)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.