Calculus Concepts: An Informal Approach to the Mathematics of Change 5th Edition

Published by Brooks Cole
ISBN 10: 1-43904-957-2
ISBN 13: 978-1-43904-957-0

Chapter 1 - Ingredients of Change: Functions and Limits - 1.7 Activities - Page 73: 17

Answer

(a) $2 x^{2}+5x+11,\ \ \ 29$ (b) $ -2 x^{2}+5x-3,\ \ \ \ -1$ (c) $10x^3+8x^2+35x+28,\ \ \ 210$ (d) $\dfrac{5 x+4}{ 2 x^{2}+7}m\ \ \ \ \dfrac{14}{ 15}$

Work Step by Step

Given $$f(x)=5 x+4 ;\ \ g(x)=2 x^{2}+7$$ (a) The sum is given by \begin{align*} f(x)+g(x)&=5 x+4 +2 x^{2}+7\\ &=2 x^{2}+5x+11 \end{align*} The sum at $x=2$ is $ 2(2)^2+5(2)+11=29$ (b) The difference is given by \begin{align*} f(x)-g(x)&=5 x+4 -2 x^{2}-7\\ &=-2 x^{2}+5x-3 \end{align*} The difference at $x=2$ is $ -2(2)^2+5(2)-3=-1$ (c) The product is given by \begin{align*} f(x)*g(x)&=(5 x+4)( 2 x^{2}+7)\\ &= 10x^3+8x^2+35x+28 \end{align*} The product at $x=2$ , $10(2)^3+8(2)^2+35(2)+28 = 210$ (d) The quotient \begin{align*} \frac{f(x)}{g(x)}&=\frac{5 x+4}{ 2 x^{2}+7} \end{align*} The quotient at $x=2$ , $\dfrac{5 (2)+4}{ 2 (2)^{2}+7}=\frac{14}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.