Calculus Concepts: An Informal Approach to the Mathematics of Change 5th Edition

Published by Brooks Cole
ISBN 10: 1-43904-957-2
ISBN 13: 978-1-43904-957-0

Chapter 1 - Ingredients of Change: Functions and Limits - 1.7 Activities - Page 74: 26

Answer

$h(p(t)) =\dfrac{4}{1+3 e^{-0.5 t} }$ and $h(p(t)) =\dfrac{4 e}{e+3}$

Work Step by Step

Given $$ h(p)=\frac{4}{p} ; p(t)=1+3 e^{-0.5 t} $$ Since $h(p(t))$ given by \begin{align*} h(p(t))&=\frac{4}{p(t) } \\ &=\frac{4}{1+3 e^{-0.5 t} } \end{align*} and $$h(p(t)) =\dfrac{4}{1+3 e^{-1} }=\dfrac{4 e}{e+3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.