Answer
1) for $f(x)$ $f\left( x\right) =1.2+3\ln x=a+b\ln x\Rightarrow b=+3$ so $f(x)$ is increasing and concave down
2) for $g(x)$ $g\left( x\right) =-1.4+3\ln x=a+b\ln x\Rightarrow b=+3$ so $g(x)$ is increasing and concave down
Work Step by Step
İn a function like $f\left( x\right) =a+b\ln x$
if $b$ is positive then function is increasing and will be concave down
1) for $f(x)$ $f\left( x\right) =1.2+3\ln x=a+b\ln x\Rightarrow b=+3$ so $f(x)$ is increasing and concave down
2) for $g(x)$ $g\left( x\right) =-1.4+3\ln x=a+b\ln x\Rightarrow b=+3$ so $g(x) $ is increasing and concave down
And when $x=1$ then $g(x)$ will be negative so we can easily match the graph