Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.1 Review of Functions - 1.1 Exercises - Page 11: 65

Answer

\[ = \frac{{4\,\left( {a + x} \right)}}{{{x^2}{a^2}}}\]

Work Step by Step

\[\begin{gathered} f\,\left( x \right) = - \frac{4}{{{x^2}}} \hfill \\ \hfill \\ use\,\,the\,\,formula\,\,\frac{{f\,\left( x \right) - f\,\left( a \right)}}{{x - a}} \hfill \\ \hfill \\ \frac{{f\,\left( x \right) - f\,\left( a \right)}}{{x - a}} = \frac{{ - \frac{4}{{{x^2}}} + \frac{4}{{{a^2}}}}}{{x - a}} \hfill \\ \hfill \\ simplify\,\,\,the\,\,\,numerator \hfill \\ \hfill \\ = \frac{{\frac{{ - 4{a^2} + 4{x^2}}}{{{x^2}{a^2}}}}}{{x - a}} \hfill \\ \hfill \\ = \frac{{\frac{{ - 4\,\left( {a - x} \right)\,\left( {a + x} \right)}}{{{x^2}{a^2}}}}}{{x - a}} \hfill \\ \hfill \\ = \frac{{4\,\left( {x - a} \right)\,\left( {a + x} \right)}}{{{x^2}{a^2}\,\left( {x - a} \right)}} \hfill \\ \hfill \\ cancel\,\,x - a \hfill \\ \hfill \\ = \frac{{4\,\left( {a + x} \right)}}{{{x^2}{a^2}}} \hfill \\ \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.