Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.4 Trigonometric Functions and Their Inverse - 1.4 Exercises - Page 49: 88

Answer

$$\eqalign{ & {\text{amplitude: 2}} \cr & {\text{period: }}\pi \cr} $$

Work Step by Step

$$\eqalign{ & f\left( \theta \right) = 2\sin 2\theta \cr & {\text{The functions of the form }}y = A\sin \left( {B\left( {\theta - C} \right)} \right) + D{\text{ have a vertical}} \cr & {\text{stretch }}\left( {{\text{or }}{\bf{amplitude}}} \right){\text{ of }}\left| A \right|,{\text{ and a period of }}\frac{{2\pi }}{{\left| B \right|}} \cr & {\text{Therefore, rewriting the function }}f\left( \theta \right) = 2\sin 2\theta {\text{ we obtain}} \cr & \underbrace {f\left( \theta \right) = 2\sin \left( {2\left( {\theta - 0} \right)} \right) + 0}_{y = A\sin \left( {B\left( {\theta - C} \right)} \right) + D} \cr & A = 2,{\text{ }}B = 2,{\text{ }}C = 0,{\text{ }}D = 0 \cr & {\text{The amplitude is: }}\left| A \right| = 2 \cr & {\text{Period: }}\frac{{2\pi }}{{\left| B \right|}} = \frac{{2\pi }}{{\left| 2 \right|}} = \pi \cr & \cr & {\text{amplitude: 2}} \cr & {\text{period: }}\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.