Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - Review Exercises - Page 51: 2

Answer

a) $D=[0,\infty)$; $R=[0,\infty)$ b) $D=(-\infty,2)\cup(2,\infty)$; $R=(-\infty,0)\cup(0,\infty)$; c) $D=(-\infty, -1]\cup[3,\infty)$; $R=[0,\infty)$

Work Step by Step

a) $f(x)=x^5+\sqrt x$ The radical is defined for $x\geq 0$. The domain of $f$ is: $D=[0,\infty)$ As $x$ is positive, the range of the function is: $R=[0,\infty)$ b) $g(y)=\dfrac{1}{y-2}$ The rational expression is defined for the values of $y$ for which the denominator is not zero: $y-2\not=0\Rightarrow y\not=2$ $D=(-\infty,2)\cup(2,\infty)$ Determine the range: $\dfrac{1}{y-2}=x$ $x(y-2)=1$ $xy-2x=1$ $xy=2x+1$ $y=\dfrac{2x+1}{x}$ $y=2+\dfrac{1}{x}$ $R=(-\infty,0)\cup(0,\infty)$ c) $h(z)=\sqrt{z^2-2z-3}$ The radical is defined for the values of $z$ for which we have: $z^2-2z-3\geq 0$ $(z^2-2z+1)-4\geq 0$ $(z-1)^2-4\geq 0$ $(z-1-2)(z-1+2)\geq 0$ $(z-3)(z+1)\geq 0$ $D=(-\infty, -1]\cup[3,\infty)$ As the radical is positive, the range of $h$ is: $R=[0,\infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.