Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.1 The Idea of Limits - 2.1 Exercises - Page 59: 12

Answer

$\mathrm{a}.\qquad 52$ $\mathrm{b}.\qquad 60$ $\mathrm{c}.\qquad 68$ $\mathrm{d}.\qquad 76$.

Work Step by Step

Read function values from the graph. $\mathrm{a}.\qquad$Over $[0.5,2.5]$, $v_{\mathrm{a}\mathrm{v}}= \displaystyle \frac{s(2.5)-s(0.5)}{2.5-5}=\frac{150-46}{2}=52$. $\mathrm{b}.\qquad$Over $[0.5,2]$, $v_{\mathrm{a}\mathrm{v}}= \displaystyle \frac{s(2)-s(0.5)}{2-5}=\frac{136-46}{15}=60$. $\mathrm{c}.\qquad$Over $[0.5,1.5]$, , $v_{\mathrm{a}\mathrm{v}}= \displaystyle \frac{s(1.5)-s(5)}{1.5-5}=\frac{114-46}{1}=68$. $\mathrm{d}.\qquad$Over $[0.5,1]$, $v_{\mathrm{a}\mathrm{v}}= \displaystyle \frac{s(1)-s(0.5)}{1-0.5}=\frac{84-46}{0.5}=76$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.