Answer
$\mathrm{a}.\qquad 52$
$\mathrm{b}.\qquad 60$
$\mathrm{c}.\qquad 68$
$\mathrm{d}.\qquad 76$.
Work Step by Step
Read function values from the graph.
$\mathrm{a}.\qquad$Over $[0.5,2.5]$,
$v_{\mathrm{a}\mathrm{v}}= \displaystyle \frac{s(2.5)-s(0.5)}{2.5-5}=\frac{150-46}{2}=52$.
$\mathrm{b}.\qquad$Over $[0.5,2]$,
$v_{\mathrm{a}\mathrm{v}}= \displaystyle \frac{s(2)-s(0.5)}{2-5}=\frac{136-46}{15}=60$.
$\mathrm{c}.\qquad$Over $[0.5,1.5]$, ,
$v_{\mathrm{a}\mathrm{v}}= \displaystyle \frac{s(1.5)-s(5)}{1.5-5}=\frac{114-46}{1}=68$.
$\mathrm{d}.\qquad$Over $[0.5,1]$,
$v_{\mathrm{a}\mathrm{v}}= \displaystyle \frac{s(1)-s(0.5)}{1-0.5}=\frac{84-46}{0.5}=76$.