Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 2 - Nonlinear Functions - 2.1 Properties of Functions - 2.1 Exercises - Page 54: 30

Answer

The domain is $(-\infty,-\frac{2}{5}] \cup [\frac{1}{3},\infty)$ .

Work Step by Step

$$ f(x)=\sqrt {15x^{2}+x-2} $$ the values $x$ for $f(x)$ is defined when: $$ 15x^{2}+x-2 \geq 0 $$ we can find all zeros of $f(x)$ : $$ 15x^{2}+x-2 = 0 $$ $ \Rightarrow $ $$ \:x_{1,\:2}=\frac{-1\pm \sqrt{1^2-4\cdot \:15\left(-2\right)}}{2\cdot \:15} $$ $ \Rightarrow $ $$ x_{1}=\frac{1}{3},\:x_{2}=-\frac{2}{5} $$ this numbers form the intervals $ (-\infty,-\frac{2}{5}), (-\frac{2}{5} ,\frac{1}{3}) $ and $(\frac{1}{3},\infty)$. we observe that only values in the intervals $(-\infty,-\frac{2}{5}) $ and $(\frac{1}{3},\infty)$ satisfy the inequality. So the domain is $(-\infty,-\frac{2}{5}] \cup [\frac{1}{3},\infty)$ .
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.