Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 0 - Section 0.6 - Solving Miscellaneous Equations - Exercises - Page 34: 14

Answer

$$x = \pm 1,{\text{ }}x = - 2,{\text{ }}x = \frac{{1 \pm \sqrt {13} }}{2}$$

Work Step by Step

$$\eqalign{ & {\left( {{x^2} - 1} \right)^2}{\left( {x + 2} \right)^3} - {\left( {{x^2} - 1} \right)^3}{\left( {x + 2} \right)^2} = 0 \cr & {\text{Factoring, the common factor is }}{\left( {{x^2} - 1} \right)^2}{\left( {x + 2} \right)^2} \cr & {\left( {{x^2} - 1} \right)^2}{\left( {x + 2} \right)^2}\left[ {\frac{{{{\left( {{x^2} - 1} \right)}^2}{{\left( {x + 2} \right)}^3}}}{{{{\left( {{x^2} - 1} \right)}^2}{{\left( {x + 2} \right)}^2}}} - \frac{{{{\left( {{x^2} - 1} \right)}^3}{{\left( {x + 2} \right)}^2}}}{{{{\left( {{x^2} - 1} \right)}^2}{{\left( {x + 2} \right)}^2}}}} \right] = 0 \cr & {\left( {{x^2} - 1} \right)^2}{\left( {x + 2} \right)^2}\left[ {x + 2 - \left( {{x^2} - 1} \right)} \right] = 0 \cr & {\left( {{x^2} - 1} \right)^2}{\left( {x + 2} \right)^2}\left( {x + 2 - {x^2} + 1} \right) = 0 \cr & {\left( {{x^2} - 1} \right)^2}{\left( {x + 2} \right)^2}\left( {3 + x - {x^2}} \right) = 0 \cr & {\text{Zero - factor property}} \cr & {x^2} - 1 = 0,{\text{ }}x + 2 = 0,{\text{ }}{x^2} - x - 3 = 0 \cr & x = \pm 1,{\text{ }}x = - 2,{\text{ }}{x^2} - x - 3 = 0 \cr & {\text{Solving }}{x^2} - x - 3{\text{ by the quadratic formula}} \cr & x = \frac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4\left( 1 \right)\left( { - 3} \right)} }}{{2\left( 1 \right)}} \cr & x = \frac{{1 \pm \sqrt {13} }}{2} \cr & {\text{The solutions are:}} \cr & x = \pm 1,{\text{ }}x = - 2,{\text{ }}x = \frac{{1 \pm \sqrt {13} }}{2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.