Answer
a) As t increases, x increases and y decreases.
b)
$y=1-x^{2}$
$x \geq 0$
Work Step by Step
a)
$x=\sqrt t$
$y=1-t$
When,
t=-2 x=undefined y=3
t=-1 x=undefined y=2
t=0 x=0 y=1
t=1 x= 1 y=0
t=2 $x=\sqrt 2$ y=-1
t=3 $x=\sqrt 3$ y=-2
b)
$x=\sqrt t$
$x^{2}=t$
$y=1-t$
$y=1-x^{2}$
From part a), we can infer that $x \geq 0$ because x is undefined at any negative t values.