Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.4 Exercises - Page 692: 4

Answer

$\dfrac {1}{2}\left( \sqrt {3}-\dfrac {\pi }{6}-\dfrac {1}{\sqrt {3}}\right) \approx 0.315 $

Work Step by Step

$A=\int ^{\pi /3}_{\pi /6}\dfrac {1}{2}\left[ r^{2}\right] d\theta =\int ^{\pi /3}_{\pi /6}\dfrac {1}{2}\tan ^{2}\theta d\theta =\dfrac {1}{2}\int ^{\pi /3}_{\pi /6}\left( {sec^2\theta }-1\right) d\theta =\dfrac {1}{2}\left[ \tan \theta -\theta \right] ^{\pi /3}_{\pi /6}=\dfrac {1}{2}\left( \sqrt {3}-\dfrac {\pi }{3}-\left( \dfrac {1}{\sqrt {3}}-\dfrac {\pi }{6}\right) \right) =\dfrac {1}{2}\left( \sqrt {3}-\dfrac {\pi }{6}-\dfrac {1}{\sqrt {3}}\right) \approx 0.315 $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.