Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.4 Exercises - Page 694: 52

Answer

The length of the curve is: $L\approx 1.2789$

Work Step by Step

The length of a curve with polar equation of one loop of the curve $$ r=\tan(\theta), \quad\quad \frac{\pi}{6} \leq \theta \leq \frac{\pi}{3} $$ is given by the following: $$ \begin{split} L=& \int_{\pi / 6}^{\pi / 3} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta\\ &=\int_{\pi / 6}^{\pi / 3} \sqrt{\tan^{2} \theta+( \sec ^{2} \theta)^{2}} d \theta\\ &=\int_{\pi / 6}^{\pi / 3} \sqrt{\tan^{2} \theta+ \sec ^{4} \theta} d \theta\\ &= \int_{-\pi / 4}^{\pi / 4} \sqrt{1+3 \sin ^{2} 2 \theta} d \theta \\ &\approx 1.2789 \end{split} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.