Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - Review - Exercises - Page 711: 52

Answer

$\dfrac{(x-3)^2}{12}+\dfrac{y^2}{16}=1$

Work Step by Step

Given: Center:$(h,k)$ and $c^2=a^2-b^2$ $2a=8 \implies a=4$ and $c=2-k==2$ and $c^2=a^2-b^2 \implies (2)^2=(4)^2-b^2$ or, $b^2=16-4 =12$ Now, $\dfrac{(x-3)^2}{12}+\dfrac{(y-0)^2}{4^2}=1$ Hence, $\dfrac{(x-3)^2}{12}+\dfrac{y^2}{16}=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.