Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 1: Functions - Additional and Advanced Exercises - Page 38: 7

Answer

(a)$ \frac{1-\cos x}{\sin x}=\frac{\sin x}{1+\cos x}$ (b) $\tan ^{2}\left(\frac{x}{2}\right) =\frac{1-\cos x}{1+\cos x}$

Work Step by Step

(a) Since \begin{align*} \sin ^{2} x+\cos ^{2} x&=1 \\ \sin ^{2} x&=1-\cos ^{2} x\\ &=(1-\cos x)(1+\cos x) \end{align*} Then \begin{align*} (1-\cos x)&=\frac{\sin ^{2} x}{1+\cos x} \\ \frac{1-\cos x}{\sin x}&=\frac{\sin x}{1+\cos x} \end{align*} (b) We have \begin{align*} \tan ^{2}\left(\frac{x}{2}\right)&=\frac{\sin ^{2}\left(\frac{x}{2}\right)}{\cos ^{2}\left(\frac{x}{2}\right)}\\ &=\frac{\frac{1-\cos \left(2\left(\frac{x}{2}\right)\right)}{2\left(2-\left(\frac{x}{2}\right)\right)}}{\frac{1+\cos \left(2\left(\frac{x}{2}\right)\right)}{2}}\\ &=\frac{1-\cos x}{1+\cos x} \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.