Answer
2
Work Step by Step
We know if $f$ is a polynomial function and $a$ is any real number, then $\lim\limits_{x \to a}f(x)=f(a)$. Using this and the product rule for limits, we have
$\lim\limits_{s \to \frac{2}{3}}(8-3s)(2s-1)=(8-3 \left(\frac{2}{3} \right))(2 \left(\frac{2}{3} \right)-1)=(8-2)(\frac{4}{3}-1)=6(\frac{4}{3}-1)=8-6=2.$