Answer
$\delta=\sqrt{5}-2$
Work Step by Step
We see from the graph that in order for $f(x)$ to be within $\epsilon=1$ of $L=4$, we must have
$$\sqrt{3} \lt x \lt \sqrt{5}.$$
Subtracting $c=2$ from all three sides gives
$$\sqrt{3}-2 \lt x-2 \lt \sqrt{5}-2.$$
Now, $\sqrt{3}-2 \approx -0.268$ and $\sqrt{5}-2 \approx 0.236$. This means $|\sqrt{5}-2| \lt |\sqrt{3}-2|$.
Thus,
$$-(\sqrt{5}-2) \lt x-2 \lt \sqrt{5}-2 \implies \sqrt{3}-2 \lt x-2 \lt \sqrt{5}-2.$$
Hence for $\delta = \sqrt{5}-2$,
$$0 \lt |x-2| \lt \delta \implies 0 \lt |f(x)-4| \lt \epsilon.$$