Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 73: 1

Answer

a. True, b. True, c. False, d. True, e. True, f. True, g. False, h. False, i. False, j. False, k. True, l. False,

Work Step by Step

Based on the graph given in the Exercise: a. True, because when $x$ approaches $-1$ from the right-side, $f(x)\to 1$ b. True, because when $x$ approaches $0$ from the left-side, $f(x)\to 0$ c. False, because when $x$ approaches $0$ from the left-side, $f(x)\to 0$ d. True, because when $x$ approaches $0$ from the left or right-side, $f(x)\to 0$ e. True, because when $x$ approaches $0$ from the left and right-side, $f(x)\to 0$ f. True, because when $x$ approaches $0$ from the left and right-side, $f(x)\to 0$ g. False, because $lim_{x\to0}f(x)= 0$ while $f(0)=1$ is the function value at this point. h. False, $lim_{x\to1}f(x)$ does not exist because the left and right limits are different. i. False, $lim_{x\to1}f(x)$ does not exist because the left and right limits are different. j. False, because when $x$ approaches $2$ from the left-side, $f(x)\to 0$ k. True, because we do not know the function to the left side of point $x=-1$ l. False, because we do not know the function to the right side of point $x=2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.