Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 74: 3

Answer

a. $2$, $1$ b. No. c. $3$. $3$ d. Yes. $3$

Work Step by Step

Use the figure in the Exercise, given the piecewise function: $f(x)=\begin{cases} 3-x\hspace1cm x\lt2 \\ \frac{x}{2}+1\hspace1cm x\lt2 \end{cases}$ a. $\lim_{x\to2^+}f(x)=2$ and $\lim_{x\to2^-}f(x)=1$ b. No. The limit $\lim_{x\to2}f(x)$ does not exist because $\lim_{x\to2^+}f(x)\ne\lim_{x\to2^-}f(x)$ c. $\lim_{x\to4^-}f(x)=\lim_{x\to4^-}(\frac{x}{2}+1)=\frac{4}{2}+1=3$ and $\lim_{x\to4^+}f(x)=\lim_{x\to4^+}(\frac{x}{2}+1)=\frac{4}{2}+1=3$ d. Yes. The limit $\lim_{x\to4}f(x)=3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.