University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.2 - Limit of a Function and Limit Laws - Exercises - Page 69: 82

Answer

(a) $\lim_{x\to0}f(x)=0$ (b) $\lim_{x\to0}\frac{f(x)}{x}=0$

Work Step by Step

$$\lim_{x\to0}\frac{f(x)}{x^2}=1$$ (a) Here we cannot use the substitution method like normal, since if we use that method, the denominator would end up with $0$. Instead, we can rewrite $f(x)$ as follows: $$f(x)=\frac{f(x)}{x^2}\times(x^2)$$ Therefore, $$\lim_{x\to0}f(x)=\lim_{x\to0}\Big(\frac{f(x)}{x^2}\times(x^2)\Big)$$ $$\lim_{x\to0}f(x)=\lim_{x\to0}\frac{f(x)}{x^2}\times\lim_{x\to0}(x^2)$$ $$\lim_{x\to0}f(x)=1\times0^2=0$$ (b) Again, we cannot use the substitution method here, but we would rewrite: $$\frac{f(x)}{x}=\frac{f(x)}{x^2}\times x$$ Therefore, $$\lim_{x\to0}\frac{f(x)}{x}=\lim_{x\to0}\Big(\frac{f(x)}{x^2}\times(x)\Big)$$ $$\lim_{x\to0}\frac{f(x)}{x}=\lim_{x\to0}\frac{f(x)}{x^2}\times\lim_{x\to0}(x)$$ $$\lim_{x\to0}\frac{f(x)}{x}=1\times0=0$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.