University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.4 - One-Sided Limits - Exercises - Page 83: 1

Answer

(a) True (b) True (c) False (d) True (e) True (f) True (g) False (h) False (i) False (j) False (k) True (l) False

Work Step by Step

(a) $\lim_{x\to-1^+}f(x)=1$ TRUE. We do see intuitively that as $x$ approaches $-1$ from the right, $f(x)$ gets arbitrarily close to $1$. (b) $\lim_{x\to0^-}f(x)=0$ TRUE. We do see intuitively that as $x$ approaches $0$ from the left, $f(x)$ gets arbitrarily close to $0$. (c) $\lim_{x\to0^-}f(x)=1$ FALSE. We showed in (b) that $\lim_{x\to0^-}f(x)=0$. (d) $\lim_{x\to0^-}f(x)=\lim_{x\to0^+}f(x)$ TRUE. We do see intuitively that as $x$ approaches $0$ from the right, $f(x)$ gets arbitrarily close to $0$. Therefore, $\lim_{x\to0^+}f(x)=0=\lim_{x\to0^-}f(x)$ (e) $\lim_{x\to0}f(x)$ exists TRUE. Since we proved in $(d)$ that $\lim_{x\to0^-}f(x)=\lim_{x\to0^+}f(x)=0$, this means $\lim_{x\to0}f(x)$ exists and equals $0$ as well. (f) $\lim_{x\to0}f(x)=0$ TRUE. $\lim_{x\to0}f(x)=\lim_{x\to0^-}f(x)=\lim_{x\to0^+}f(x)=0$ (g) $\lim_{x\to0}f(x)=1$ FALSE. As shown in $(f)$, $\lim_{x\to0}f(x)=0$ (h) $\lim_{x\to1}f(x)=1$ FALSE. We can see intuitively: - $\lim_{x\to1^-}f(x)=1$, because as $x$ approaches $1$ from the left, $f(x)$ gets arbitrarily close to $1$. - $\lim_{x\to1^+}f(x)=0$, because as $x$ approaches $1$ from the right, $f(x)$ gets arbitrarily close to $0$. Therefore, $\lim_{x\to1^+}f(x)\ne\lim_{x\to1^-}f(x)$, so $\lim_{x\to1}f(x)$ does not exist. (i) $\lim_{x\to1}f(x)=0$ FALSE. As proved in $(h)$, $\lim_{x\to1}f(x)$ does not exist. (j) $\lim_{x\to2^-}f(x)=2$ FALSE. We see intuitively that as $x$ approaches $2$ from the left, $f(x)$ gets arbitrarily close $0$, instead of $2$. So, $\lim_{x\to2^-}f(x)=0$ (k) $\lim_{x\to-1^-}f(x)$ does not exist. TRUE. There are no values of $f(x)$ as $x$ approaches $-1$ from the left. In other words, $\lim_{x\to-1^-}f(x)$ does not exist. (l) $\lim_{x\to2^+}f(x)=0$ FALSE. The graph stops at $x=2$, so there are no values of $f(x)$ as $x$ approaches $2$ from the right. In other words, $\lim_{x\to2^+}f(x)$ does not exist.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.