Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 2 - First Order Differential Equations - 2.1 Linear Equations; Method of Integrating Factors - Problems - Page 41: 32

Answer

Finding the integrating factor: $\mu(t)=\exp(\int t/2\ dt)$ $\mu(t)=e^{t^2/4}$ Finding the y function: $y(t)=1/\mu(t) [\int \mu(s)(1)ds+c]$ $y(t)=e^{-t^2/4}[\int e^{s^2/4}ds+c]$ $y(t)=e^{-t^2/4}\int e^{s^2/4}ds+ce^{-t^2/4}$ Applying the L'Hospital rule on the first term: $\lim_{t\rightarrow +\infty} \dfrac{\int e^{s^2/4}ds}{e^{t^2/4}}=\lim_{t\rightarrow +\infty}\dfrac{e^{t^2/4}}{t/2\ e^{t^2/4}}=2/t\rightarrow0$ For the second term, the exponential goes to 1, so $lim_{t\rightarrow+\infty} y(t)=c$

Work Step by Step

Finding the integrating factor: $\mu(t)=\exp(\int t/2\ dt)$ $\mu(t)=e^{t^2/4}$ Finding the y function: $y(t)=1/\mu(t) [\int \mu(s)(1)ds+c]$ $y(t)=e^{-t^2/4}[\int e^{s^2/4}ds+c]$ $y(t)=e^{-t^2/4}\int e^{s^2/4}ds+ce^{-t^2/4}$ Applying the L'Hospital rule on the first term: $\lim_{t\rightarrow +\infty} \dfrac{\int e^{s^2/4}ds}{e^{t^2/4}}=\lim_{t\rightarrow +\infty}\dfrac{e^{t^2/4}}{t/2\ e^{t^2/4}}=2/t\rightarrow0$ For the second term, the exponential goes to 1, so $lim_{t\rightarrow+\infty} y(t)=c$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.