Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 2 - First Order Differential Equations - 2.2 Separable Equations - Problems - Page 47: 5

Answer

The solution of this differential equation is $\tan{(2y)}-\sin{(2x)}-x=C_0$.

Work Step by Step

We have given $\dfrac{dy}{dx}=(\cos^2{x})(\cos^2{2y})$ Now solve the differential equation as follows: $\dfrac{dy}{dx}=(\cos^2{x})(\cos^2{2y})$ $\dfrac{dy}{\cos^2{(2y)}}=(\cos^2{x})dx$ Since, $\dfrac{1}{\cos{x}}=\sec{x}$ We get, $\sec^2{(2y)}\,dy=(\cos^2{x})dx$ Substitute, $\cos^2{x}=\dfrac{\cos{2x}+1}{2}$ We get, $\sec^2{(2y)}\,dy=\left(\dfrac{\cos{2x}+1}{2}\right)dx$ Now integrate both sides as follows: $\int\sec^2{(2y)}\,dy=\int\dfrac{\cos{2x}}{2}dx+\int\dfrac{1}{2}dx$ We get, $\dfrac{\tan{(2y)}}{2}=\dfrac{\sin{(2x)}}{2}+\dfrac{x}{2}+C$ Rearrange the equation We get, $\dfrac{\tan{(2y)}}{2}-\dfrac{\sin{(2x)}}{2}-\dfrac{x}{2}=C$ Or, $\dfrac{\tan{(2y)}-\sin{(2x)}-x}{2}=C$ Or, $\tan{(2y)}-\sin{(2x)}-x=C_0$ Hence, the solution of this differential equation is $\tan{(2y)}-\sin{(2x)}-x=C_0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.