Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 2 - First Order Differential Equations - 2.2 Separable Equations - Problems - Page 48: 14

Answer

(a) The solution of this differential equation is $y=(-\sqrt{1+x^2}+2)^{-\tfrac{1}{2}}$ or $y=\dfrac{1}{\sqrt{2-\sqrt{1+x^2}}}$. (c) The interval in which the solution is defined is $(-\sqrt{3},\sqrt{3})$. (b)

Work Step by Step

(a) We have given $\dfrac{dy}{dx}=xy^3(1+x^2)^{\tfrac{-1}{2}}$ Now solve the differential equation as follows: $\dfrac{dy}{dx}=xy^3(1+x^2)^{\tfrac{-1}{2}}$ $y^{-3}dy=\dfrac{x}{\sqrt{1+x^2}}\,dx$ Now integrate both sides as follows: $\int y^{-3}dy=\int\dfrac{x}{\sqrt{1+x^2}}\,dx$ Let $1+x^2=u\implies x\,dx=\dfrac{du}{2}$ We get, $\int y^{-3}dy=\dfrac{1}{2}\int\dfrac{1}{\sqrt{u}}\,du$ $\implies -\dfrac{y^{-2}}{2}=\dfrac{1}{2}\sqrt{u}+C$ $\implies y^{-2}=-\sqrt{u}+C_0$ $\implies y=(-\sqrt{u}+C_0)^{-\tfrac{1}{2}}$ Now substitute back $u$. $ y=(-\sqrt{1+x^2}+C_0)^{-\tfrac{1}{2}}$ Thus the explicit form is $y=(-\sqrt{1+x^2}+C_0)^{-\tfrac{1}{2}}$. We have given the initial condition $y(0) = 1$. Substitute $x=0$ and $y =1$ We get, $1=(-\sqrt{1}+C_0)^{-\tfrac{1}{2}}$ $\implies C_0-1=1$ $\implies C_0=2$ Hence, the solution of this differential equation is $y=(-\sqrt{1+x^2}+2)^{-\tfrac{1}{2}}$ or $y=\dfrac{1}{\sqrt{2-\sqrt{1+x^2}}}$. (c) We know the denominator can not be zero for a rational function. Therefore, $\sqrt{2-\sqrt{1+x^2}}\ne 0$ $\implies 2-\sqrt{1+x^2}\ne 0$ $\implies 2 \ne \sqrt{1+x^2}$ $\implies 1+x^2\ne 4$ $\implies x^2\ne 3$ $\implies x\ne\sqrt{3} $ and $x\ne-\sqrt{3}$ Also, the value inside the square root can not be negative. $2-\sqrt{1+x^2}\ge0$ $\implies 2\ge\sqrt{1+x^2}$ $\implies 4\ge1+x^2$ $\implies 3\ge x^2$ $\implies |\sqrt{3}|\ge x$ $\implies -\sqrt{3}\le x\le\sqrt{3}$ Also, $1+x^2> 0$ is always true for every real number. Combining $-\sqrt{3}\le x\le\sqrt{3}$, $x\ne\sqrt{3} $ and $ x\ne-\sqrt{3}$ We get, $-\sqrt{3}< x
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.