Answer
$\left[\begin{array}{ccc|c} 2 & 3 & -1 & 1 \\ 1 & 0 & 1 &0 \\ -1 & 2 & -2 & 0\end{array}\right]$
Work Step by Step
The augmented matrix for a system of two linear equations ($m$ and $n$) can be written as:
$a_{11}x_1+.....+a_{1n}x_n=b_1 \\ \vdots
\\a_{m1}x_1+.....+a_{mn}x_n=b_m$
which is equivalent to: $\left[\begin{array}{ccc|c} a_{11} & \cdots & a_{1n} &b_1\\a_{21} & \cdots & a_{2n} &b_2\\ \vdots & \vdots & \vdots & \vdots \\a_{m1} &\cdots &a_{mn} & b_m \end{array}\right]$
Now, plug the corresponding terms in the above form of the augmented matrix.
$\left[\begin{array}{ccc|c} 2 & 3 & -1 & 1 \\ 1 & 0 & 1 &0 \\ -1 & 2 & -2 & 0\end{array}\right]$