Answer
Row echelon form:
$$
\begin{bmatrix}
4 && 3 \\
0 && -\frac{1}{2} \\
\end{bmatrix}$$
Reduced Row echelon form:
$$
\begin{bmatrix}
1 && 0\\
0 && 1 \\
\end{bmatrix}$$
Work Step by Step
$$
\begin{bmatrix}
4 && 3 \\
2 && 1 \\
\end{bmatrix}$$
Subtract $\frac{1}{2}$ times row 1 from row 2
$$\sim
\begin{bmatrix}
4 && 3 \\
0 && -\frac{1}{2} \\
\end{bmatrix}$$
Which is in row echelon form
Divide row 1 be 4
$$\sim
\begin{bmatrix}
1 && \frac{3}{4} \\
0 && -\frac{1}{2} \\
\end{bmatrix}$$
Multiply row 2 by (-2)
$$\sim
\begin{bmatrix}
1 && \frac{3}{4} \\
0 && 1 \\
\end{bmatrix}$$
Subtract $\frac{3}{4}$ times row 2 from row 1
$$\sim
\begin{bmatrix}
1 && 0\\
0 && 1 \\
\end{bmatrix}$$
Which is in reduced row echelon form