Answer
The statement is false when $m=1$ and $n=2$.
Work Step by Step
Written in standard english, the logical statement $\forall$ means "for all". Therefore, the statement we are trying to disprove is "For all positive integers $m$ and $n$, $m\cdot n≥m+n$" When we plug $1$ in for $m$ and $2$ in for $n$, we get $1\cdot2≥1+2\Rightarrow2≥3$, which is false. Therefore, the statement is false when $m=1$ and $n=2$.