Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 3 - The Logic of Quantified Statements - Exercise Set 3.2 - Page 117: 30

Answer

Statement: ∀ integers a, b, and c, if a − b is even and b − c is even, then a − c is even. Contrapositive: ∀ integers a, b, and c, if a − c is not even, then a − b is not even or b − c is not even. Converse: ∀ integers a, b and c, if a − c is even then a − b is even and b − c is even. Inverse: ∀ integers a, b, and c, if a − b is not even or b − c is not even, then a − c is not even. The statement is true (and hence its contrapositive is also true because the contrapositive is logically equivalent to the statement), but its converse and inverse are false. As a counterexample, let a = 3, b = 2, and c = 1. Then a − c = 2, which is even, but a − b = 1 and b − c = 1, so it is not the case that both a − b and b − c are even. The converse and inverse and logically equivalent to each other so proving that one is false proves them both to be false.

Work Step by Step

A statement of the form: $\forall x \in D$, if P(x) then Q(x), has as its contrapositive statement: $\forall x \in D$, if ~Q(x) then ~P(x), as its converse statement: $\forall x \in D$, if Q(x) then P(x), and as its inverse statement: $\forall x \in D$, if ~P(x) then ~Q(x).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.